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In a number of numerical experiments it has been demonstrated that the initial growth of quantum variances
of the dynamical variables for a chaotic trajectory is exponential in nature. This is a typical signature of
classical chaos on a generic quantum dynamical feature. Based on the theory of multiplicative noise we have
proposed a quantitative theory of this exponential divergence of quantum dispersions for general Hamiltonian
systems, the rate constant being determined by the correlation function of the fluctuations of the curvature of
the classical potential. The theory has been subsequently applied to a model driven double-well oscillator with
detailed classical and quantum-mechanical calculation to verify the theoretical propositions.
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I. INTRODUCTION

Chaos in dynamical systems is one of the key issues in
nonlinear physics today@1,2#. The chaotic motion is not as-
sociated with the variation of stochastic parameters or force,
but is intrinsically due to unstable character of trajectories in
phase space. To be more specific, the instability is because of
exponential separation of initially nearby trajectories. The
rate of growth of the separation is measured by the largest
Lyapunov exponent. Very recently we have proposed@3# a
general relationship between fluctuations and diffusion for
Hamiltonian systems which relates the largest Lyapunov ex-
ponent to the fluctuations of the curvature of the potential in
a way that is reminiscent of the Kubo relations in statistical
physics, so that the exponent can be viewed as a transport
coefficient in phase space. We have also shown@4# that the
theory of multiplicative noise can be a good natural descrip-
tion of classical chaos in several occasions.

Recently a number of numerical experiments have dem-
onstrated@5–7# that the initial growth of quantum variances
of dynamical variables, such as position or momentum for a
classical trajectory, is exponential in nature. This is a typical
signature of classical chaos on a generic dynamical feature.
The object of this paper is to propose a theory for this expo-
nential growth of quantum variances. We have shown that
correlation between fluctuations in the curvature of the clas-
sical potential which is amenable to a stochastic description
in terms of the theory of multiplicative noise@8# also deter-
mines the rate of initial growth of dispersion. Based on
Wigner quantum-classical correspondence@9,10# we have
derived appropriate Fokker-Planck equations where the drift
and diffusion terms have their origin in dynamical properties
of fluctuations of the curvature of the classical potential. Us-
ing detailed classical and quantum-mechanical calculations,
the semiclassical analysis of the dynamics of quantum vari-
ances has been numerically examined and verified in a model
driven double-well oscillator which admits classical chaos.

The organization of the paper is as follows: In Sec. II we

briefly present the\ scaling of the Wigner equation approach
of Fox and Elston@10#, followed by a detailed treatment of
classical fluctuations of the curvature of the potential using
the theory of multiplicative noise in Sec. III. An application
of the master equation for the quantum fluctuation distribu-
tion function in the case of a driven double-well oscillator is
given in Sec. IV. The paper is concluded in Sec. V.

II. \ SCALING OF WIGNER EQUATION

To start with we consider the quasiclassical distribution
approach of Wigner. Over the years this has proved to be a
standard starting point of analysis of quantum-classical cor-
respondence. The Wigner distribution function is defined in
phase space$xi ,pi% as follows:

W~$xi%,$pi%!5@1/~\p!N#E •••E dj1•••djNc* ~$xi1j i%!

3c~$xi2j i%!expF ~2i /\!S (
i
pij i D G , ~1!

where c(x) refers to the quantum wave function of an
N-degree-of-freedom Hamiltonian system.

The time evolution of the Wigner functionW of a dy-
namical system characterized by a Hamiltonian of the form

H5(
i51

N

~pi
2/2mi !1V~$xi%! ~2!
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One also recovers the Liouville equation in the limit
\→0.

Following Ref.@10# it is now convenient to introduce the
scaling

xi5xi~ t !1\1/2m i ,
~4!

pi5pi~ t !1\1/2n i ,

where\ is the smallness parameter analogous to the expan-
sion parameter employed in Van Kampen’s system size ex-
pansion.m andn in Eq. ~4! refer to fluctuations in the coor-
dinate and momentum, respectively. The time evolution of
the fluctuation distribution function obeys

]f~$m i%,$n i%,t !

]t
5(

k
F2

nk
mk

]f

]mk
1m j

]2V

]xj]xk

]f

]nk
G

1O~\1/2!. ~5!

The initial distribution satisfies

^~Dm i !
2&1/2^~Dn i !

2&1/25s
1

2s
5
1

2
, ~6!

where s specifies the spread in the initial distribution of
fluctuations

f~m,n,0!5)
k51

N
1

4p
expF2

mk
2

2s222s2nk
2G . ~7!

To put Eq.~5! in a more compact form, it is convenient to
invoke the symplectic structure of Hamiltonian dynamics.
For this, we specify

zi5H xi for i51...N

pi2N for i5N11...2N.

Defining I as

I5F02E
E
0 G ,

whereE is an N3N unit matrix, the Hamilton equations
become

żi5(
j
I i j

]H

]zj
. ~8!

Again introducing scaling ofzi as

zi5zi~ t !1\1/2h i , ~9!

with

h i5m i

5n i2N

for i51...N
for i5N11...2N,

one obtains the equation of motion for the fluctuation distri-
bution function as

]f~h,t !

]t
52(

i , j
Jj ih i

]f~h,t !

]h j
. ~10!

Here

Ji j5(
k
I ik

]2H

]zk]zj
~11!

contains the second derivative of the potential. The matrixJ
is thus determined by the nature of the classical motion. For
a chaotic trajectory, the fluctuations inJ thus affect the evo-
lution of quantum fluctuations. We address this aspect in
Sec. III of the paper.

III. TREATMENT OF FLUCTUATIONS
OF THE CURVATURE OF THE POTENTIAL

Equation~10! may be rewritten in a more compact form
as follows:

]f

]t
52F~ t !•“f, ~12!

where

F5J•h, ~13!

and“ refers to differentiation with respect to components of
h.

Before proceeding further we would like to emphasize
two relevant points at this stage. First, we consider a fully
developed chaotic regime, i.e., the measure of a regular re-
gion is overwhelmingly small so that the dynamical variables
$zi% may be treated as stochastic variables. Equations~11!
and ~13! then imply thatF in Eq. ~12!, which incorporates
the fluctuations of the curvature of the potential, is a stochas-
tic process.

Second, in our theoretical and numerical considerations
that follow we do not make anya priori assumption on the
nature of stochastic processF(t). The special case that a
stochastic process is a Gaussian ord-correlated process, etc.,
have received so much attention in the recent literature that it
is necessary to note that no such ad hoc assumption has been
made. Equation~12! may therefore be interpreted as a sto-
chastic differential equation with multiplicative noise.

The characteristic curves corresponding to Eq.~12! admit
of general stochastic nonlinear differential equations

ḣ i5Fi~h1 ...hN ,t !, i51...N, ~14!

Since the nonlinearity in Eq.~14! generates higher mo-
ments, one cannot expect to find a differential equation for
^h&. Thus one has to work with linear Eq.~12! directly.

We now rewrite Eq.~12! as

ḟ5@A01aA1~ t !#f, ~15!

where

A052F0–“

and

A152F1•“. ~16!

Here partitioning ofF into F0 andaF1 implies thatF con-
tains a constant partF0 and a fluctuating partF1(t) which
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gives rise to instability. Herea is a smallness parameter
required to keep track of the strength of fluctuations due to
classical chaos. The symbol“ is used for the operator that
differentiates everything that comes after it with respect to
the components ofh.

One of the main results for the linear equations of the
form ~15! with multiplicative noise@8# may now be in order.
The average off obeys

^ḟ&5 HA01a^A1&1a2E dtŠ^A1~ t !exp@tA0#

3A1~ t2t!&‹exp@2tA0#J ^f&. ~17!

The above result is based on the second-order cumulant
expansion, and is valid in the case when fluctuations are
small but rapid and correlation timetc is short but finite, or
more precisely,

Š^A1~ t !A1~ t8!&‹50 for ut2t8u.tc . ~18!

We have, in general,̂A1&Þ0. Here^^ . . . && implies

Š^qiqj&‹5^qiqj&2^qi&^qj&.

Equation~17! is exact in the limit correlation timetc tends to
zero. Using relations~16!, we obtain

]^f&
]t

5H 2F0•“2a^F1~ t !•“&1a2E
0

a

dtŠ^F1~ t !•“

3exp~2tF0•“ !F1~ t2t!•“&‹exp~tF0•“ !J ^f&.

~19!

The operator exp~2tF0•“! provides the solution of the
equation

] f ~h,t !

]t
52F0•“ f ~h,t ! ~20!

~f signifies the ‘‘unperturbed’’ part of̂f&! which can be
found explicitly in terms of characteristic curves. The equa-
tion

h5F0~h! ~21!

for fixed t determines a mapping fromh~t50! to h~t!, i.e.,
h→ht with inverse~ht!2t5h. The solution of~20! is

f ~h,t !5 f ~h2t,0!Ud~h2t!

d~h!
U5exp@2tF0•“# f ~h,0!,

~22!

ud~h2t!/d~h!u being a Jacobian determinant.
The effect of exp~2tF0•“! on f ~h! is as follows:

exp~2tF0•“ ! f ~h,0!5 f ~h2t,0!Udh2t

dh U. ~23!

This simplification yields

]^f&
]t

5H 2F0•“2a^F1~ t !•“&1a2E
0

a

dtUdh2t

dh U
3Š^F1~h,t !•“tF1~h2t,t-t!&&“2tU dh

dh2tUJ ^f&.

~24!

Since Eq.~12! neglects the effect of higher powers ofh, the
above equation is a semiclassical equation for quantum fluc-
tuation distribution function. At the same time the equation
is second order ina, i.e., to ordera2te ~with respect to the
strength of classical fluctuations!. Since Eq.~24! contains
second-order derivatives with respect to the components of
h, it has the form of a Fokker-Planck equation.

IV. APPLICATION

A. Theoretical considerations

As an application we consider a model double-well oscil-
lator characterized by its positionx and momentump and
driven by a classical field of frequencyv0. The Hamiltonian
@11# is given by

H5p2/2m1ax42bx21gx cosv0t. ~25!

Here the first term represents the kinetic energy, the second
and third terms comprise the potential energy of the double-
well oscillator, and the remaining part is the driving term.g
includes the effect of coupling of the system with the field as
well as the strength of the field. The classical equations of
motion are

ẋ5p,
~26!

ṗ524ax312bx2g cosv0t.

The equations of motion for quantum fluctuation variablesh1
andh2 corresponding tox andp @Eq. ~14!# read as follows:

d

dt Fh1

h2
G5JFh1

h2
G , ~27!

whereJ is expressed as in earlier notation, and

z15x and z25p

are given by

J5F02E
E
0 GF ]2H

]z1]z1
]2H

]z2]z1

]2H

]z1]z2
]2H

]z2]z2

G .
J is then reduced to

F 0j~ t !12b

1

m
0
G ,

where

j~ t !5212ax2.
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Therefore we have

d

dt Fh1

h2
G5F01F1 , ~28!

with

F05F ~1/m!h2

2bh1
G and F15F 0

j~ t !h1
G ,

whereF0 andF1 are the constant and fluctuating parts, re-
spectively. The fluctuations inF1, i.e., inj(t), are due to the
stochasticity of the classical dynamical equation of motion
~26!. Now for the sure part we write

F0,15
1

m
h2 , F0,252bh1 ,

and for the fluctuating part we have, similarly,

F1,150, F1,25j~ t !h1 .

Without necessarily beingd correlated,z(t) has a short but
finite autocorrelation timetc . We may now apply the result
of Eq. ~24!.

The mappingh→ht is found by solving the ‘‘unper-
turbed’’ equations

ḣ15
1

m
h2 ,

ḣ252bh1 .

As a short time approximation we consider the variation of
h1 andh2 during tc ,

h1
t5

t

m
h21h1 ,

~29!
h2

t5ml2th11h2 .

wherel5A2b/m.
The Jacobian determinant@Eq. ~24!# of this transforma-

tion or mapping reads

Udh2t

dh U5F12ml2t
2t/m

1G512l2t2'1,

and also we note

U dh

dh2t
U'1. ~30a!

Next we consider the derivative terms in Eq.~24!. The
first term of the right hand side in Eq.~24! can be written as
follows:

F0•“5(
j
F0 j

]

]h j
5

1

m
h2

]

]h1
12bh1

]

]h2
. ~30b!

Similarly we have

F1•“5(
j
F1 j

]

]h j
5j~ t !h1

]

]h2
~30c!

and

F1~h2t,t2t!•“2t5(
j
F1 j~ t2t!

]

]h j
2t

5j~ t2t!h1
2t ]

]h2
2t .

The average and cumulants in Eq.~24! can therefore be ex-
pressed as

^F1~h,t !•“ !5^j~ t !&h1

]

]h2
,

~30d!
Š^F1~h,t !•“tF1~h2t,t2t!&‹•“2t

5Š^j~ t !j~ t2t!&‹h1

]

]h2
h1

2t ]

]h2
2t .

Also note that differentiation with respect toh2
2t can be writ-

ten in terms ofh1 andh2 @see Eq.~29!#;

]

]h2
2t 5

t

m

]

]h1
1

]

]h2

and

h1
2t ]

]h2
2t 5

t

m
h1

]

]h1
2

t

m
h2

]

]h2
1h1

]

]h2
.

~30e!

The above relation~30e! can be used to simplify~30d!.
Therefore we obtain

Š^F1~h,t !•“tF1~h1
2t ,t2t&‹•“2t

5h1
2 ]

]h2
2 1

t

m
h1
2 ]2

]h2]h1
2

t

m S h1h2

]2

]h2
2 1h1

]

]h2
D .
~31!

We are now in a position to write down the master equation
~24! in the case of the model driven double-well system. This
is

]^f&
]t

5F H 2
h2

m

]

]h1
2S 2b1ac1a2

c1
mDh1

]

]h2
J

1H a2
c1
m

h1
2 ]2

]h2dh1
1a2h1

2c0
]2

]h2
2

2a2
h1h2

m
c1

]2

]h2
2 J G^f&, ~32!

wherec0 andc1 are expressed in terms of correlation func-
tions as follows:
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c05E
0

a

Š^j~ t !j~ t2t!&‹dt,

~33!

c15E
0

a

Š^j~ t !j~ t2t!&‹t dt,

Also note thatc5^j(t)&.
Note that Eq.~32! is a Fokker-Planck equation which

takes into account the quantum fluctuations to a leading or-
der, and that the drift and diffusion coefficients have been
derived using the classical dynamical properties of the cha-
otic system.

On inspection of Eq.~32!, the average drift of quantum
fluctuations of the dynamical variablesh1 and h2 corre-
sponding tox and p, respectively, can be written immedi-
ately as follows:

h1~ t !;S 12 h1~0!1
1

2mk
h2~0! Dexp~kt! ~34!

and

h2~ t !;Sm2 kh1~0!1
1

2
h2~0! Dexp~kt!,

as t is large.
The average growth of quantum fluctuations is thus expo-

nential in nature, which is in agreement with earlier numeri-
cal studies@5–7#, and the rate constant of growthk is due to
the classical fluctuations of the curvature of the potential as
embedded in the correlation function inc1 in

k5F 1m S 2b1amc1
a2

m
c1D G1/2. ~35!

B. Numerical verifications

To verify the exponential growth of quantum fluctuations
quantitatively, we first consider the classical motion corre-
sponding to the Hamiltonian~25!. We choose the parameter
values@11# m51, a50.5,g510, andv056.07, whereg in-
cludes the effect of the coupling and the driving field ampli-
tude.b is varied from set to set to achieve well developed
global chaos for the initial conditionsx0523.5 andp050.0.
To calculate classical ensemble average quantities, the aver-
aging is carried over a long time series for the given initial

condition. A representative decay of correlation function
Š^j(t)j(t2t)&‹ is shown~b510! in Fig. 1.

It has been pointed out earlier that we take care of fluc-
tuations upto the order ofa2. Sinceatc is small, as implied
in the theory, it has been possible to subdivide the time axis
in the intervals ofDt such thatDt@tc and alsoaDt!1.
That is,h1 and h2 do not vary much during a timeDt in
which j(t) has forgotten its past. Thus, on the coarse-grained
level determined byDt, the process is approximately Mar-
kovian. tc is thus very short~not zero!, and is shorter com-
pared to relevant time scales of the system, i.e., 1/v and 1/g.
To implement this numerically we consider the first fall of
the correlation function, which is fitted by an exponential
function of the typeŠ^j2&‹exp~2bt! to extract the near-
Markovian part of the decay,b being determined by the fit,
and calculate the integralc1 which is expressed as

c15E
0

a

tŠ^j~ t !j~ t2t!&‹dt.

Note thatc150 in the Markovian case.
Having calculated the value ofc1 and also that of

c„5^j(t)&… from a long time series, the classical growth rate
constantk in Eq. ~35! can be obtained immediately. The
entire procedure is repeated for various values ofb, as dis-
played in Table I~second column,ktheoretical!.

The quantum calculation proceeds by direct quantization
of H, with x̂ and p̂ being position and momentum operators,
respectively. We choose harmonic oscillator eigenvectors
$un&% as our basis vector defined as

FIG. 1. Plot of the correlation functionŠŠj(t)j(t2t)‹‹ vs time.
Both units are arbitrary.

FIG. 2. Plot of quantum variances with time. Curve (a) is a plot
of the quantum variance in momentum with time, and curve (b) is
a plot of the quantum variance in position with time. Both the units
are arbitrary.

TABLE I. Comparison of the rate of divergence of quantum
uncertainty calculated numerically~from fully quantum consider-
ations!, knumerical, with the rate of divergence calculated theoreti-
cally, ktheoretical, @from Eq. ~35!, classical expression#.

b knumerical ktheoretical

12.0 2.86 2.9
10.0 3.0 2.94
8.0 1.97 2.06
5.0 2.62 2.68

54 2363THEORY OF QUANTUM FLUCTUATIONS IN . . .



F p̂22m1
1

2
mv2x̂2G un&5~n1 1

2 !\vun&. ~36!

For computational purpose we setv56.25 and\51. The
undriven double-well potential when diagonalized in this ba-
sis ~we have chosen 120 in number! gives 19 negative en-
ergy eigenvalues. The time evolution of the systemc under a
periodic driving field can be followed by the Schro¨dinger
equation

i\ ċn5(
m

Hmncm ,

where

cm5^muc~ t !&,

and the Hamiltonian matrixHmn is as given in@11#.
To bring forth quantum-classical correspondence we con-

struct, as our initial wave function, the minimum uncertainty
wave packet of the Gaussian form in both position and mo-
mentum representations centered around average positionx
and average momentump corresponding to initial conditions
for the classical trajectory for a typical value ofb and g.
Thus

uc~ t50!&5(
n

cn~0!un&,

where

cn~0!5exp~2 1
2 uau2!a* n/An!

and

a5Fx1 i S 1

mv D pGAmv/2.

In Fig. 2 we plot a typical variation of uncertainty inx
~corresponding toh1! and p ~corresponding toh2! for the
wave packet centered atx523.5 and p50.0, and for
b510.0. It is evident that after an initial plateau portion the
uncertainties inx andp diverge. To make this part prominent
we cut off the plateau regions, and in Fig. 3~a!–3~d! plot the
quantum variance inx where the exponential divergence is
exhibited for various values ofb ~the line indicated by
boxes!. The neglect of plateau regions is in accordance with
large t, as implied in solution~34! ~but t is not too large so
that quantum correlations become strong enough to invali-
date the semiclassical approximation!. It may be noted that
these plateau regions are not apparent in the kicked dynamics
@6#, but may be inherent in many other observations of flows.
The plot of quantum variances for various values ofb is then
fitted with exponential functions to determine the rate con-
stants of divergence~knumerical as shown in Table I!. This is
indicated by the continuous lines in Figs. 3~a!–3~d!. For
comparison of the rates, calculated classically as well as
from quantum-mechanical considerations, we superimpose
solutions ~34! on Figs. 3~a!–3~d! ~dashed lines! with the
ktheoretical values indicated in Table I. The accuracy of the
agreement between the quantum case with the Gaussian
wave packet and the corresponding classical case, as exhib-
ited in Figs. 3~a!–3~d! and in Table I, is thus quite satisfac-
tory. It must be emphasized that the accuracy of the agree-
ment rests primarily on the implementation of the near-
Markovian character of the dynamics, the correlation time
being the shortest time scale compared to the inverse of the
driving frequencyv or coupling constantg. Our numerical
experience shows that if one accounts for the decay of cor-
relation function withinv21 or g21, the agreement remains
within 10%. This lends support to the statistical description
of the fluctuations in the curvature of the potential, which has
been shown to be instrumental in several earlier occasions
investigated by us@3,4#.

FIG. 3. Plot of the quantum
variance in momentum with time
for different values ofb. The line
indicated by the box refers to a
fully quantum calculation. The
continuous line refers to an expo-
nential fit for the quantum calcu-
lation. The dashed line represents
the classical solution@Eq. ~34!#,
wherek is determined from clas-
sical consideration.~a! b512.0,
~b! b510.0, ~c! b58.0, ~d!/
b55.0. ~Both units are arbitrary.!
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C. Discussions

The exponential growth of quantum uncertainty has
proved to be an important manifestation of semiclassical
chaos. Although Wigner formalism has been explicitly em-
ployed in the earlier two@7,10# analyses,~and also in the
present one!, it is interesting to note that this manifestation is
accounted for by using classical arguments. For example,
Fox and Eiston@10# have considered a systematic 1/\ expan-
sion of the Wigner equation similar to the 1/V expansion of
the master equation by Van Kampen, where the quantum
uncertainty was shown to depend only on the contribution of
the classical motion to Wigner equation, quantum dynamics
being subtle involved in the sense that the uncertainty prod-
uct puts a constraint in the initial Wigner density~so that it is
not just ad function!. However, in a different analysis Bonci
et al. @7#, have shown that a quantum diffusion generating
mechanism also contributes to make the growth of the quan-
tum uncertainty faster than when this mechanism is absent.
Rather than emphasizing mechanisms, here we stress a dif-
ferent aspect, namely, the statistical description of the curva-
ture of the potential embedded in the classical contribution to
the Wigner equation in terms of the theory of multiplicative
noise. An offshoot of this treatment is a quantitative analyti-
cal expression for the rate of divergence of the quantum un-
certainty. We point out in passing that our result is correct up
to second order, but exact in the limit in which the correla-
tion time tends to zero.

V. CONCLUSIONS

Classical chaos is characterized by extreme sensitivity to
initial conditions. Thus the chaotic dynamics, although deter-
ministic, is stochastic in nature in the statistical sense. It is
therefore expected that statistical mechanical formalisms
might be useful@3,4,12–14# in the description of classical
chaos. We have seen that the theory of multiplicative noise is
a good natural description for this purpose in the treatment of
classical fluctuations in the curvature of the potential whose
correlation is subsequently shown to be instrumental in de-
termining the rate of divergence of quantum variances. We
have numerically verified the basic theoretical propositions,
and note that the theory is valid for small but rapid fluctua-
tions with a correlation time which is short but finite. This is
necessary for a systematic separation of the time scales in-
volved in the dynamics. We hope that the stochastic treat-
ment, which takes into account the arbitrary correlation time,
will be useful for further progress in such issues.
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